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INTRODUCTION 

SUBSTANTIAL impetus has been given to the numerical 
solution of two-dimensional boundary layer flows by the 
work of Pataakar and Spalding [l, 21. The primary contri- 
bution consists of a coordinate transformation (hereafter, 
the “o-transformation”) from the physical variables (x, y) 
to variables (x, w), where 

and the subscripts I and E denote, respectively, the inner 
and outer edges of the boundary layer. Use of the non- 
dimensional stream function o as the cross-stream variable 
confines the boundary layer to the rectangular region 
x > 0, 0 < o C 1. This fact coupled with a working ex- 
pressio&for mass entrainment, d+ddx, results in efficient 
utilization of the grid network in a finite difference solution. 

The present authors have encountered some unexpectedly 
large errors in results obtained with this formulation, 
particularly when finite difference analogues of the govern- 
ing differential equations are derived from Taylor series 

expansions. This is the result of inherent inaccuracies in 
finite difference approximations in the near wall region since 

au/am = &A2 _ A*au 
ay a. PU ai (2) 

and all higher derivatives of u with respect to w, become 
infinite as y -+ 0. The resulting higher truncation errors at 
node points placed near the wall is of primary concern due 
to its effect on the extraction of wall gradients. 

Patankar and Spalding circumvented this dil?iculty by 
matching a Couette flow analysis in the near wall region 
with the finite difference solution away from the wall. 
Although this is undoubtedly satisfactory for most applica- 
tions, the complexity of the concept combined with the need 
to derive new expressions for each class of problems treated 
has resulted in rejection of this feature by many authors 
[3-51. In addition, Patankar and Spalding recommend 
that difference analogues he obtained by integrally averag- 
ing the conservation equation over a control volume 
extending from wi_* to oi+, with an assumed linear 
variation of the dependent variable between adjacent node 
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points. As will be shown here, this serves to reduce near 

wall truncation errors associated with the w-transformation. 

The purpose of this note is to present a modified trans- 

formation (hereafter, the “&-transformation”) 

which is similar to that of Patankar and Spalding in its 

implementation, but yields more accurate numerical results 

due to the well-behaved nature of the solution near the wall. 

In addition, a method for extracting wall gradients directly 

in the w-plane is discussed. Numerical results are obtained 

for constant property, zero pressure gradient flows over a 

semi-infinite flat plate with self-similar blowing or suction 

at the wall. 

ANALYSIS 

Combining equations (1) and (3) in the general form 

o” = ($ - $JA+, the continuity and momentum equations 

for two dimensional boundary layer flow on a flat plate 

-+apv=() apu 
ax ay 

au au a au 
P”& + P”ay = ay kfay 

(4) 

(5) 

become [6] 

au 1 

ax-w 

= -&;(sg). (6) 

For comparative purposes, difference analogues of (6) were 

obtained by two methods : 

Case I. Integrally averaged difference analogue 
Following [l], an approximate form of (6) may be obtained 

by integrating over a control volume bounded by xj, xj_ 1 
and (wi + w,+,)/2, (wi + wi_ J/2 

2 

(xj - Xj-*)(Wi+l - wi-l) 

1 j lnA$wn-’ ; 

x1-1 ,,“.-.+a,.l.* .~.. ., 

-~+,,d$;-;(s;)]dwdx=O (7) 

and assuming that u varies linearly with w between cross- 

stream grid points. 

Case II. Central difference analogue 
Employing implicit central difference expressions for the 

cross-stream derivatives and a backward difference ex- 

pression for the streamwise derivative yields 

& ui+i., - 4.I 

______- 
nA$w”-’ i_t,,_, 6, 

(8) 

where 6,=wi-wiml, 6,=w,+i-w, and 612=wi+l-~i_1. 

Both analogues result in sets of linearized algebraic 

equations in the form 

ui,j=Ai,j_l~i+I~j+Bi,j_,ui_,~j+Ci,_,,i=2,3...N (9) 

which can be solved by efficient elimination methods [I]. 

For illustrative purposes, the problem considered here is 

that of constant property laminar boundary layer flow with 

self-similar blowing or suction at the wall. The flow is 

governed by equation (6) with narr + p and is subject to the 

boundary conditions 

u=o 

pu = - f!$ = -h pu,J2Re$ aty =0 (IO) 

u=u m asy+ x 

where f, is a constant blowing/suction parameter [7]. 

For the self-similar problem the entrainment law can be 

replaced by the exact result 

dA$/dx = (puJ2Re:) r (u/u,) dq. (11) 

Also, ue = I&~). This eliminates the minor errors incurred 

in the Patankar-Spalding formulation when (i) applying the 

external boundary condition u = u, at o = I, and (ii) using 

approximate entrainment rates. 

RESULTS AND DISCUSSION 

Numerical solutions of equation (6), subject to the bound- 

ary conditions (lo), were effected for the physical parameters 

f, = -0.75 and 5.0. u, = 100 ft/s. p = 10m5 lb/fts, and 

p = 0.075 lb/ft3. Results were obtained using 25, 50 and 

100 node points for combinations of transformation (o and 
0’) and difference analogue (integral averaged and central 

difference). In addition, two choices for “stacking” node 



SHORTER COMMUNICATIONS 1861 

point distributions {w,}, as extractcd from initial y-distribu- 
tions 

Yi = I6 - wwY,> y = land2 112) 

were used. The numerical solutions were advanced step-wise 
until c,Re$ was unchanging to six significant figures. 
Percentage errors in ui and c, were computed by means of 
comparisons with “exact” self-similar results. In calculating 
numerical vafues of c,, wall gradients were obtained by 
differentiate third order ~IynomiaI fits to the near wall 
data using 

au PU au P at42 _=--=__ forn=l 
ay 6qaw 2AJI aw 

(13) 

and 

for n = 2. (14) 

The present authors recommend that wall gradients be 
extracted directly in the w-plane, as in equations (13) and 
(14), since the accuracy of the results obtained is consistent 
with that of the near wall numericai data. 

Typical results are su~a~z~ in Tables 1 and 2. In 
general, the ~z-transfo~ation yields improved accuracies 
in the near walI region, particularly for suction (Table 2), 
where an order of magnitude improvement is obtained for 
both u2 and C~ Furthermore, it is seen that the w2-trans- 
formation is relatively insensitive to methods of differencing 
equation (6) (contrast Cases I and II for n = 2): such is not 
the case for the ~transfo~ation, where use of central 

Table 1. Results for f, = - 0.75 
_-= 

‘A error o/o error 

case N y u2L u21ni2 c,i,,, c,~,,r 
I 25 1 -0-80 -0+43 2.84 -0.17 
I 50 1 -04.5 -0.011 1.30 -0024 
I 100 1 -@24 - 0.0028 062 -00042 
I 25 2 -0.12 -01.5 0.50 -@30 
I 50 2 -0.031 -0.038 @13 -0.075 
I 100 2 -0GO77 -0W94 0031 -0.019 

II 25 1 - 6.67 -0079 -1190 -0-23 
II 50 1 -3.50 - 0020 - 6.26 -0.041 
II 100 1 -1.77 -00049 -3.17 - 0.0084 
II 25 2 -4.47 -012 - 8.69 -024 
II 50 2 - 1.38 -@030 -2.72 -0061 
II 100 2 -0.41 -0GO77 -0.81 -0.015 

Case I -Integrally averaged analogue [equation (7)]. 
Cast I I -Central difference analogue [equation (8)]. 
n = 1 w-transformation. 
n = 2- cf?-transformation, 

Table 2. Results for f, = 5.0 
_- 

y0 error *A error 

Case N y I u2 n=, % tnn* c, n-1 I CA* 

I 25 1 1.96 a22 -4.03 064 
I 50 1 0.96 0056 -2.10 0.16 
I 100 1 0.47 0014 - 1.07 0*040 
I 25 2 0.071 -WO47 -0.33 * -0011 
: 1: ; t3018 -0GO13 -@083 -0.0027 

@0044 -~~34-~021 -OGoO67 

II 25 1 109 -00067 18.3 @14 
II 50 1 5.84 -@0027 l@l 0035 
II loo 1 3.05 -@0081 5.35 0.0088 
II 25 2 735 0.16 15.1 033 
II 50 2 2.29 0041 4.61 0.082 
II 100 2 0.69 @Of0 1-38 0*020 

difference analogues results in large errors. The success of 
the integrally averaged approach, as recommended in [l], 
is related to the extent to which the diIference analogue for 
the cross-stream advective term is centered above the 
“T-point. This conclusion is supported by the order of 
magnitude improvement in the Case I results when 7 = 2 
(ys = 4y, and ws t l&s) vs. y = 1 (y2 = 2y2 and wJ s4wz). 
Furthermore, as may be seen from Fig 1, relatively larger 
errors are incurred, in the cast of the w-transformation, as 
y,iy, -+ 0. Recalling the implications of equation (2) this 
is not surprising 

ia- 
06 

t 

0 rJ=l 

d n=2 

A u 0 
AA A A + a,2 p 9 A,D, 

0 O-I 02 0.3 o-4 @J 0.6 O-7 

Yj/Y, 

FIG. I. Comparisons of errors in the near wall data for case I : 
n=l(o)vs.n=2(A)forN=SOandy=l. 



The results also indicate extraordinary sensitivity to node- 
point distribution, especially near the wall, and suggest that 
considerable improvement in accuracy, regardless of solu- 
tioa method. would accrue if an “optimal” distribution 4 
could be found. In this respect, the authors have developed a 
new method for two-point boundary value problems [8] 
which shows promise for marching problems as well. 
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INTRODUCTION 

LOCK et al. [ 1 J have presented results for the periodic freezing 
and melting of water in an essentially und~ension~ car- 
tesian arrangement wherein the temperature at the plane 
x = 0 varied in an approximately sinusoidal manner. with 
the mean value being the fusion temperature. The system 
initially was liquid so that freezing occurred in the first 
half period, with melting in the second half period, and the 
two hour period was executed successively thereafter. Figure 
I shows by points some of the results in terms of the depth 
in centimeters and the time in hours. with the points being 
taken from the first. second and fourth freeze and the first 
and third melt. Lock et al. showed that a good degree of 
correspondence was achieved both by approximate analysis 
and numerical solution of the conduction equation for the 
developing phase; the temperature in the existing phase 
being the fusion value. The analytic soiution is not easy to 
evaluate and the numerical sotution appears to have been 
prodigaf of computer time. 

In the water--ice system, the latent beat of fusion is large 
enough so that when the surface temperature is not far from 

the saturation value then the thermal capacity effecti in 
the solid can be ignored (low Stephan number). Then the 
solution [Z] oftbe problem involves conduction effects alone 
and is quite simple. Conversely, test8 with water cannot 
really verify the degree to which a theory adequately accountS 
for the thermal capacity effects unless the surface temperature 
amplitude is made very large. 

It is the present purpose to show that the simple theory 
adequately predicts the experimental features of Lock’s 
results to the extent that the more compiieated analysis does 
so. Lock has, in fact, afready done this in a prior reference 
[3}. Also, there is examined his suggestion that some of the 
difference between theory and experiment is ascribable to 
the effect of convection as that has been indicated by the 
melting experiments of Yen [4]. This consideration shows 
that while the convective effect mobabtv did exist and is in 
the direction required, it is b&e@ d&ernibJe in terms Of 

the results of the Lock experiments. General&. however, 
the effect is important and should be considered in melting 
problems. 


